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The mechanism of metal-mediated DNA damage by 
carcinogenic danthron (1,8-dihydroxyanthraquinone) 
and anthraquinone was investigated by the DNA 
sequencing technique using 32p-labeled human DNA 
fragments obtained from the human c-Ha-ras-1 proto- 
oncogene and the p53 tumor suppressor gene. Dan- 
thron caused DNA damage particularly at guanines 
in the 5'-GG-3', 5'-G_.G_GGG-3', 5'-GGGGG-3' sequences 
(damaged bases are underlined) in the presence of 
Cu(II), cytochrome P450 reductase and the NADPH- 
generating system. The DNA damage was inhibited by 
catalase and bathocuproine, suggesting the involve- 
ment of H202 and Cu(1). The formation of 8-oxo-7,8- 
dihydro-2'-deoxyguanosine increased with increasing 
concentration of danthron. On the other hand, carcino- 
genic anthraquinone induced less oxidative DNA da- 
mage than danthron. Electron spin resonance study 
showed that the semiquinone radical could be produced 
by P450 reductase plus NADPH-mediated reduction of 
danthron, while little signal was observed with anthra- 
quinone. These results suggest that danthron is much 
more likely to be reduced by P450 reductase and gen- 

erate reactive oxygen species through the redox cycle, 
leading to more extensive Cu(II)-mediated DNA 
damage than anthraquinone. In the case of anthraqui- 
none, its hydroxylated metabolites with similar reac- 
tivity to danthron may participate in DNA damage in 
vivo. We conclude that oxidative DNA damage by 
danthron and anthraquinone seems to be relevant for 
the expression of their carcinogenicity. 

Keywords: Oxidative DNA damage, danthron, 
anthraquinone, NADPH, copper, P450 reductase 

Abbreviations: DTPA, diethylenetriamine-N,N,N',N',N"- 
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deoxyguanosine; SOD, superoxide dismutase 
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INTRODUCTION 

A derivative of anthraquinone, danthron, has been 
widely used as a laxative and an intermediate for 
dyes. [1! There is sufficient evidence for the carci- 
nogenicity of danthron in experimental animals: 
hepatocellular carcinomas in mice,  [2] and adeno- 
carcinoma of the colon in rats. [31 The International 
Agency for Research on Cancer (IARC) has classi- 
fied danthron as a group 2B carcinogen, I1] which is 
possibly carcinogenic to humans. Anthraquinone 
is widely used as an intermediate in the manufac- 
ture of dyes and pigments. [4] The available data 
were adequate to evaluate the carcinogenicity of 
anthraquinone in experimental anirnals.  [4] How- 
ever, the mechanism of DNA damage induced 
by anthraquinones remains to be clarified. 

Recently, danthron has been reported to have 
genotoxicity to mammalian cells which was 
attributed to their inhibitory effects on topoiso- 
merase II. [51 However, a variety of quinone derivat- 
ives are highly redox active molecules capable of 
causing oxidative DNA damage through the gen- 
eration of reactive oxygen species. I6-131 Therefore, 
in this study, we examined whether anthraquin- 
ones (danthron and anthraquinone) could cause 
oxidative DNA damage in the presence of metal 
ion, cytochrome P450 reductase and the NADPH- 
generating system using 32p-5P-end-labeled DNA 
fragments obtained from the c-Ha-ras-1 and the 
p53 genes. We measured the content of 8-oxo- 
7,8-dihydro-2'-deoxyguanosine (8-oxodG) in calf 
thymus DNA using a high performance liquid 
chromatograph equipped with an electrochem- 
ical detector (HPLC-ECD). Furthermore, we 
examined the generation of radicals from 
anthraquinones with an electron spin resonance 
(ESR) spectrometer. 

MATERIALS AND METHODS 

Materials 

Restriction enzymes (ApaI, AvaI, EcoRI, PstI and 
XbaI) and T4 polynucleofide kinase were pur- 

chased from New England Biolabs. Calf intestine 
phosphatase and glucose-6-phosphate-dehydro- 
genase were from Boehringer Manheim GmbH. 
['y-g2p]ATP (222 TBq/mmol) was from New Eng- 
land Nuclear. Anthraquinones (danthron and 
anthraquinone) were from Aldrich Chemical Co. 
Diethylenetriamine-N,N, NI,N',N"-pentaacetic 
acid (DTPA) and bathocuproinedisulfonic acid 
were from Dojin Chemicals Co. (Kumamoto, 
Japan). Reduced form of fl-nicotinamide 
adenine dinucleotide phosphate (NADPH), and 
its oxidized form (NADP+), acrylamide, bi- 
sacrylamide, piperidine and hydrogen peroxide 
(H202) were from Wako Chemicals Co. (Osaka, 
Japan). CuC12, MgC12, ethanol and D-mannitol 
were from Nacalai Tesque, Inc. (Kyoto, Japan). 
Calf thymus DNA, superoxide dismutase 
(SOD, 3000 units/rag from bovine erythrocytes) 
and catalase (45000units/mg from bovine 
liver) were from Sigma Chemical Co. Nuclease 
P1 was from Yamasa Shoyu Co. (Chiba, Japan). 
Cytochrome P450 reductase (10.0 m g / m l  protein 
from human microsomes) was from Gentest 
Corporation. 

Preparation of 32p-5'-end-labeled DNA 
Fragments 

DNA fragments were obtained from the human 
p53 tumor suppressor gene [14] and the c-Ha-ras- 
1 protooncogene. I15! The DNA fragment of the 
p53 tumor suppressor gene was prepared from 
pUC18 plasmid. The singly 32p-51-end-labeled 443- 
base pair fragment (ApaI 14179-EcoRl* 14621) 
was obtained according to the method described 
previously. [161 DNA fragments were also pre- 
pared from plasmid pbcNI, which carries a 6.6- 
kb BamHI chromosomal DNA segment containing 
the human c-Ha-ras-1 protooncogene. [17"1sl 
The singly labeled 341-base pair fragment (XbaI 
1906-AvaI* 2246) and 98-base pair fragment 
(AvaI* 2247-PstI 2344) were obtained according 
to the method described previously. [17'181 
The asterisk indicates 32p-labeling. 
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Detection of Damage to Isolated DNA 

The standard reaction mixtures in a 1.5-ml micro- 
tube containing danthron or anthraquinone, 2.5 
~g/ml cytochrome P450 reductase, 250 ~M NADP +, 
500 pM glucose-6-phosphate, 0.1 units/ml glucose- 
6-phosphate dehydrogenase and 500 gM MgC12 
in 200 ~tl of 10mM bicarbonate buffer (pH 7.8) 
containing 5 ~tM DTPA were incubated for 30 
min at 37 °C. And then, 32p-5'-end-labeled DNA 
fragment, 2 ~tM/base calf thymus DNA and 20 
~M CuC12 were added to the mixtures, followed 
by the incubation for 120 min at 37 °C. The DNA 
fragments were treated with 1 M piperidine for 
20min at 90°C where indicated and electro- 
phoresed as described previously. [17] The experi- 
ments were performed in air-saturated solution. 

The preferred cleavage sites were determined 
by direct comparison of the positions of the 
oligonucleotides with those produced by the 
chemical reactions of the Maxam-Gilbert pro- 
cedure [191 using a DNA-sequencing system (LKB 
2010 Macrophor). A laser densitometer (LKB 
2222 UltroScan XL) was used for the measure- 
ment of the relative amounts of oligonucleotides 
from treated DNA fragments. 

Measurement of 8-oxodG Formation in Calf 
Thymus DNA 

The amount of 8-oxodG was measured by a 
modified method of Kasai et al. [2°] The standard 
reaction mixtures containing danthron or 
anthraquinone, 2 .5~g/ml cytochrome P450 
reductase, 250~1M NADP +, 500~tM glucose-6- 
phosphate, 0.1units/ml glucose-6-phosphate 
dehydrogenase and 500~tM MgC12 in 10mM 
bicarbonate buffer (pH 7.8) containing 5~M 
DTPA were incubated for 30min at 37°C. And 
then, 100 ~tM/base calf thymus DNA and 20 ~M 
CuCl2 were added to the mixtures, followed by 
the incubation for 120 min at 37 °C. To stop the 
reaction, 0.2 mM DTPA was added. After etha- 
nol precipitation, the DNA was digested to the 
nucleosides by incubation with nuclease P1 and 

alkaline phosphatase and analyzed with an 
HPLC-ECD as described previously. I211 

ESR Spectra Measurements 

ESR spectra were measured at room temp- 
erature (25°C) by using a JES-TE-100 (JEOL, 
Tokyo, Japan) spectrometer with 100-kHz field 
modulation according to the method described 
previously. [221 Spectra were recorded with 
microwave power of 2 mW, modulation ampli- 
tude of 0.050mT, receiver gain of 200, time 
constant 0.3 sec and sweep time 8 min. The mag- 
netic fields were calculated by  the splitting of 
Mn(II) in MgO (AH3_4 = 8.69 mT). 

RESULTS 

DNA Damage by Anthraquinones in the 
Presence of Cytochrome P450 Reductase, the 
NADPH-generating System and Metal Ions 

Figure 1 shows the DNA damage induced 
by anthraquinone or danthron in the presence 
of cytochrome P450 reductase, the NADPH-gen- 
erating system and Cu(II). DNA damage was 
not observed in the absence of cytochrome 
P450 reductase (data not shown). The intensity 
of DNA damage increased depending on their 
concentrations. Danthron induced DNA damage 
at much lower concentrations than anthraquin- 
one. The DNA damage was enhanced by piper- 
idine treatment (data not shown), suggesting 
that these anthraquinones caused not only back- 
bone breakage but  also base damage. Danthron 
and anthraquinone caused the DNA damage in 
the presence of Cu(II), but  not in the presence of 
Fe(II), Fe(III) or Mn(II) (data not shown). 

Effects of Scavengers and Metal Chelators on 
DNA Damage by Danthron 

Figure 2 shows the effects of scavengers and 
bathocuproine, a Cu(I)-specific chelator, on DNA 
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Cu(II)  + cy tochrome P450 reductase 
+ NADPH-genera t ing  system 
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FIGURE 1 DNA damage by anthraquinones in the presence 
of Cu(II), cytochrome P450 reductase and the NADPH-gener- 
ating system. The reaction mixtures containing danthron 
or anthraquinone, 2.5txg/ml cytochrome P450 reductase, 
250~M NADP +, 500 ~M glucose-6-phosphate, 0.1 units/ml 
glucose-6-phosphate dehydrogenase and 500~M MgC12 
in 200 ~1 of 10mM bicarbonate buffer (pH 7.8) containing 
5~M DTPA were incubated for 30rain at 37°C. Subse- 
quently, the 32p-5r-end-labeled 98-base pair DNA fragment, 
2 gM/base of calf thymus DNA and 20 gM CuC12 were added 
to the mixtures, followed by the incubation for 120min at 
37°C. The DNA fragments were treated with 1 M piperidine 
for 20 rain at 90 °C, and electrophoresed on an 8% polyacryl- 
amide/SM urea gel. The autoradiogram was obtained by 
exposing an X-ray film to the gel. The control contained none 
of anthraquinones, Cu(II), cytochrome P450 reductase and 
the NADPH-generating system. 

damage induced by danthron in the presence of 
cytochrome P450 reductase, the NADPH-gener- 
ating system and Cu(II). Bathocuproine and 
catalase inhibited DNA damage, suggesting the 
involvement of Cu(I) and H202. DTPA also 
inhibited DNA damage (data not shown). Meth- 
ional, which scavenges not only "OH but also 
crypto-OH radicals, [z3"24] completely inhibited the 
DNA damage, although other typical hydroxyl 
radical ('OH) scavengers (ethanol and mannitol) 
did not inhibit DNA damage. SOD showed 
a little inhibitory effect on DNA damage, but 

FIGURE 2 Effects of scavengers and bathocuproine on 
DNA damage induced by danthron. The reaction mixtures 
containing 50 ~M danthron, 2.5 ~tg/ml cytochrome P450 re- 
ductase,250 gMNADP +, 500 p,M glucose&phosphate, 0.1 units/ 
ml glucose-6-phosphate dehydrogenase and 500 ~VI MgC12 
in 200gl of 10mM bicarbonate buffer (pH 7.8) containing 
5 I~M DTPA were incubated 30rnin at 37°C. Subsequently, 
the 32p-5t-end-labeled 341-base pair DNA fragment, 10 ~M/ 
base of calf thymus DNA and 20 ~tM CuC12 were added to the 
mixtures, followed by the incubation for 120rain at 37°C. 
The DNA fragments were treated by the method described in 
the legend to Figure 1. The control contained none of anthra- 
quinones, Cu(II), cytochrome P450 reductase and the 
NADPH-generating system. Where indicated, 50 ~M batho- 
cuproine, 500units/ml of catalase, 10% ethanol, 0.1M 
mannitol, 0.1 M methional or 100 units/ml of SOD was added. 

not completely. Similar results were obtained 
for anthraquinone (data not shown). 

Site Specificity of DNA Damage by 
Anthraquinones 

Figures 3 and 4 show the site specificity of DNA 
damage induced by danthron and anthraquin- 
one. Danthron caused preferential DNA damage 
at the 51-GG-3/, 51-GGGG-31 and 51-GGGGG-3 / 
sequences (damaged bases are underlined) in 
the human c-Ha-ras-1 protooncogene (Figure 
3A) and the p53 tumor suppressor gene (Figure 
4A-1). In addition, danthron caused DNA cleav- 
age at the guanine residue of the 5'-ACG-3' 
sequence (Figure 4A-1). It is interesting that the 
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FIGURE 3 Site specificity of DNA damage by anthraquinones. The reaction mixtures containing 20 pM danthron (A) or 100 pM 
anthraquinone (B), 2.5 ~tg/ml cytochrome P450 reductase, 250 pM NADP +, 500 ~tM glucose-6-phosphate, 0.1 units/ml glucose-6- 
phosphate dehydrogenase and 500~tM MgCI2 in 200~tl of 10mM bicarbonate buffer (pH 7.8) containing 5~M DTPA were 
incubated for 30 rain at 37 °C. Subsequently, the 32p-5'-end-labeled 98-base pair DNA fragment, 2 ~tM/base of calf thymus DNA 
and 20 pM CuC12 were added to the mixtures, followed by the incubation for 120 rain at 37 °C. The DNA fragments were treated 
by the method described in the legend to Figure 1. The relative amounts of DNA fragments were measured by scanning the 
autoradiogram with a laser densitometer (LKB 2222 UltroScan XL). The horizontal axis shows the nucleotide number of the 
c-Ha-ras-1 protooncogene. 

ACG sequence is complementa ry  to the codon 
273 (a known  hotspot) in exon 8 of the p53 
gene. [25'261 When dena tured  DNA was used, 

preferential  damage  occurred more  f requent ly  
at every  guanine residue (Figure 4A-2). Similar 
DNA cleavage patterns were  observed wi th  
anthraquinone  (Figures 3B, 4B-1 and 4B-2). 

Formation of 8-oxodG by Anthraquinones 

Figure 5 shows 8-oxodG format ion in calf thy- 
mus  DNA treated with various concentrat ions of 
dan thron  and anthraquinone.  The format ion of 
8-oxodG by these anthraquinones  significantly 
increased at 2 ~M compared  with the controls 
(p < 0.05). Danthron significantly increased the 
format ion of 8-oxodG compared  wi th  anthra- 
quinone at 2-20 ~M (p < 0.05). The format ion of 
8-oxodG by  danthron  decreased at 20 ~M, sug- 
gesting that 8-oxodG was conver ted  to another  
oxidative products .  

media ted  reduct ion of dan th ron  is shown in 
Figure 6B. No  signal was observed in the 
absence of N A D P H  or P450 reductase (data not  
shown). Figure 6A shows the compute r  simula- 
tion for the semiquinone  radical using hyperf ine  
splitting constants (a l l=0 .07  mT(6H)). This 

s tudy  demons t ra ted  for the first t ime the hyper -  
fine splitting constants of the semiquinone rad- 
ical. Hyperf ine  splitting constants were  estimated 
b y  reference to a repor t  concerning semiquinone 
radicals.[11'12| The addi t ion of Cu(II) resulted in a 

marked  decrease in the signal intensity of the 
radical (Figure 6C). These findings suggest  that 
Cu(II) can react wi th  the radical. Catalase d id  
not  inhibit the formation of the radical (data 
not  shown). Little or no signal was observed 
wi th  anthraquinone  in the presence of cyto- 
chrome P450 reductase and the NADPH-gener -  
ating system (data not  shown). 

D I S C U S S I O N  

Formation of Free Radicals from 
Anthraquinones 

The ESR spect rum of a radical generated by  
cytochrome P450 reductase plus  NADPH-  

The present s tudy has shown that carcinogenic 
danthron (1,8-dihydroxyanthraquinone) and anthra- 
quinone efficiently caused Cu(II)-mediated oxidat- 
ive D N A  damage  in the presence of cy tochrome 
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FIGURE 4 Site specificity of DNA damage by anthraquinones. The reaction mixtures containing 20 pM danthron (A-l, A-2) or 
100pM anthraquinone (B-l, B-2), 2.5pg/ml cytochrome P450 reductase, 250pM NADP +, 5001~M glucose-6-phosphate, 
0.1 units /ml glucose-6-phosphate dehydrogenase and 500 pM M 3g~212 in 200 pl of 10 mM bicarbonate buffer (pH 7.8) containing 
5 pM DTPA were incubated for 30rain at 37°C. Subsequently, the 3 P-5'-end-labeled 443-base pair DNA fragment, 2 p~M/base of 
calf thymus DNA and 20 ~tM CuCl  2 w e r e  added to the mixtures, followed by the incubation for 120 min at 37 °C. The DNA 
fragments were treated by the method described in the legend to Figure 1. The relative amounts of DNA fragments were 
measured by scanning the autoradiogram with a laser densitometer (LKB 2222 UltroScan XL). The horizontal axis shows the 
nucleotide number of the human p53 tumor suppressor gene and underscoring shows complementary sequence to codon 273 
(nueleotide number 11486-11488). 

P450 reductase and the NADPH-generating 
system. Danthron induced DNA damage more 
efficiently than anthraquinone. It is noteworthy 
that danthron and anthraquinone caused cleavage 
at guanine of the 5'-ACG-3 ' sequence of the 
codon 273, a known hotspot [25'261 of the p53 
tumor suppressor gene. In addition, danthron 
and anthraquinone caused DNA damage at con- 
secutive guanines, particularly at the 5'-(~_G-3', 
5'-GGGG-3 ' and 5~-GGGGG-3 ~ sequences in the 
human c-Ha-ras-1 protooncogene and the p53 
tumor suppressor gene. The sequence specificity 
of DNA damage at consecutive guanines may be 
explained on the basis of the highest occupied 

molecular orbital (HOMO) distribution. A large 
part of electrons of HOMO is located on the 5'-G 
of GG and GGG sequences, [271 and therefore, this 
guanine is likely to be oxidized. Sequence-select- 
ive Cu(II) binding to DNA could be explained by 
sequence-dependent variations of the distribu- 
tion of electrons of HOMO. Thus, the sequence 
specificity of oxidative DNA damage may be 
caused by binding of copper to this guanine, 
lowering of ionization potential and 5Mocaliza- 
tion of electron density of HOMO on GG bases. 

ESR study confirmed that cytochrome ]?450 
reductase plus NADPH mediated the reduction 
of danthron to the semiquinone radical even 
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FIGURE 5 Formation of 8-oxodG by anthraquinones. The re- 
action mixture containing danthron (o) or anthraquinone (e), 
2.5 txg/ml cytochrome P450 reductase, 100 pM NADP +, 500 I~M 
glucose-6-phosphate, 0.1tmits/ml glucose-6-phosphate de- 
hydrgenase and 500 pJvl MgC12 in 10 mM bicarbonate buffer 
(pH Z8) containing 51~M DTPA were incubated for 30rain at 
37 °C. Subsequently, 100 ~tM/base calf thymus DNA and 20 ~tM 
CuC12 were added to the mixtures, followed by the incubation 
for 120rain at 37°C. To stop the reaction, 0.2raM DTPA was 
added and the DNA was precipitated in ethanol. The DNA 
fragment was enzymatically digested into nucleosides, and 8- 
oxodG formation was measured with an HPLC-ECD. Values 
represent means±SD of three independent experiments 
except the control (containing neither danthron nor anthraqui- 
none, four experiments). *p < 0.05, **p < 0.01 and ***p < 0.001, 
compared with the control. 

(A) Computer simulation 

(B) Danthron 

in the absence of Cu(II). This result suggests 
that cytochrome P450 reductase and NADPH 
were necessary for the radical formation from 
danthron. Catalase completely inhibited DNA 
damage by danthron but did not inhibit the 
formation of the semiquinone radical, suggest- 
ing that this radical is not the main reactive 
species causing DNA damage. 

In order to clarify what kinds of reactive 
species cause DNA damage, scavenger effects 
on the DNA damage and its site specificity were 
examined. Catalase and bathocuproine inhibited 
the DNA damage, suggesting that H 2 0  2 reacts 
with Cu(I) to produce reactive species capable of 
causing DNA damage. Typical "OH scavengers 
showed no inhibitory effect on the DNA dam- 
age. Danthron induced the site-specific DNA 

(C) Danthron + Cu(ll) 

I I 
lmT 

FIGURE 6 ESR spectrum of the radical generated by cyto- 
chrome P450 reductase-catalyzed reduction of danthron. The 
reaction mixture contained 6 mM danthron, 6 mM NADPH 
and 2 m g / m l  cytochrome P450 reductase in 40mM phos- 
phate buffer (pH 7.8) containing 2 ~tM DTPA, and the spec- 
trum was recorded immediately after mixing (A). Computer 
simulation of the semiquinone radical generated by reduc- 
tion of danthron was carried out (a H = 0.07mT(6H)) (B). 
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damage frequently at consecutive guanine res- 
idues, while *OH causes DNA damage at every 
nucleotide with little site specificity. [22"28] Meth- 
ional, which scavenges not only *OH but also 
crypto-OH radicals, [23'241 completely inhibited 
the DNA damage. Rodriguez et al. [29| reported 
that Cu(II)/ascorbate/HaO2-mediated DNA 
damage in aerobic aqueous solutions may be 
induced in vitro and in vivo through formation 
of a DNA-Cu(I)-H202 complex. On the basis of 
the present findings, and referring to several 
papers, [29-31] it is considered that the species 
causing DNA damage is a kind of crypto-OH 
radical, such as the Cu(I)-OOH complex. Alter- 
natively, it is possible that "OH is formed in the 
immediate vicinity of DNA bases so that typical 
"OH scavengers cannot react with "OH before 
*OH reacts with DNA bases. 

Some quinones can undergo enzymatic and 
nonenzymatic redox cycling with their corres- 
ponding semiquinone radicals and generate 
O2 .[6-13] A variety of quinone derivatives are 
highly redox active molecules capable of causing 
oxidative DNA damage through the generation 
of reactive oxygen species. Relevantly, Akman 
et al. [9] reported that DNA base modifications 
were induced in isolated human chromatin by 
NADH dehydrogenase-catalyzed reduction of 
doxorubicin, a derivative of anthraquinone. 
Anthraquinones appear to induce DNA damage 
in a similar manner, althrough these compounds 
are less likely to be reduced non-enzymatically 
and require enzymatic reduction for DNA dam- 
age. On the basis of these results, and referring 
to several papers, [11'12'29-31] the proposed mech- 
anism of DNA damage induced by danthron is 
shown in Figure 7. Danthron is reduced by cyto- 
chrome P450 reductase and NADPH to the 
semiquinone radical. This radical reacts with 
02 to yield 02, which is dismutated to H202. 
Cu(II) is reduced to Cu(I) by the interaction with 
02, and H202 reacts with Cu(I) to form reactive 
species capable of causing DNA damage. Copper 
is present in the mammalian cell nucleus and 
may contribute to high-order chromatin struc- 

G-6-P 

02" 
dehydrogenase// 

+ MgCI2 d 
D-glucono-l,5-1actone ~ , ~  I 

6-phosphate _ | 02 

NADPH NADP, 
~. Cytochrome P450 4 

~ OH O- O~ 

0 • OH 
Danthron Semiquinone 

radical 
Cu(I) Cu(ll) 

02 02" 

H202 

Cu(1)-OOH ~ ( .OH) ~ ONA damage 

FIGURE 7 Proposed mechanism of DNA damage induced 
by danthron in the presence of cytochrome P450 reductase, 
the NADPH-generating system and Cu(II). 

tures. I321 Although anthraquinone appears to 
induce DNA damage in a similar manner, 
anthraquinone induced DNA damage to a lesser 
extent than danthron. This finding could be 
explained by assuming that anthraquinone less 
efficiently undergo the reduction catalyzed by 
cytochrome P450 reductase plus NADPH than 
danthron. In the case of anthraquinone, its 
hydroxylated metabolites with similar reactivity 
to danthron may participate in DNA damage. 

The present study demonstrated that dan- 
thron efficiently caused oxidative DNA damage 
in the presence of Cu(II), cytochrome P450 
reductase and the NADPH-generating system. 
In particular, danthron caused DNA damage at 
consecutive guanines. The experiment using 
HPLC-ECD showed the formation of 8-oxodG 
at consecutive guanines, although many other 
oxidative products may be formed. [33'341 These 
findings suggest that 8-oxodG is presumably 
formed at these guanines, and subsequently, 
8-oxodG may be further converted to piperidine- 
labile oxidized form of 8-oxodG, such as guani- 
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d i n o h y d a n t o i n  a n d  2 - a m i n o i m i d a z o l o n e .  1351 The 

fo rma t ion  of 8-0xodG a n d  g u a n i d i n o h y d a n t o i n  is 

k n o w n  to cause  G- -~T  t r ansve r s ion .  [361 G u a n i -  

d i n o h y d a n t o i n  a n d  2 - a m i n o i m i d a z o l o n e  m a y  

l ead  to G - - 4 C  t r ansve r s ion .  [37] These t r ansve r -  

s ions  m i g h t  l ead  to m u t a t i o n  a n d  s u b s e q u e n t l y  

cause  cancer .  We  c o n c l u d e  tha t  Cu ( I I ) - me d i a t e d  

oxida t ive  D N A  d a m a g e  b y  d a n t h r o n  a n d  an th ra -  

q u i n o n e  seems  to be  r e l evan t  for the exp re s s ion  

of its carc inogenic i ty .  
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